Functionalized Anodic Aluminum Oxide Membrane–Electrode System for Enzyme Immobilization
نویسندگان
چکیده
A nanoporous membrane system with directed flow carrying reagents to sequentially attached enzymes to mimic nature’s enzyme complex system was demonstrated. Genetically modified glycosylation enzyme, OleD Loki variant, was immobilized onto nanometer-scale electrodes at the pore entrances/exits of anodic aluminum oxide membranes through His6-tag affinity binding. The enzyme activity was assessed in two reactions—a one-step “reverse” sugar nucleotide formation reaction (UDP-Glc) and a two-step sequential sugar nucleotide formation and sugar nucleotide-based glycosylation reaction. For the one-step reaction, enzyme specific activity of 6–20 min(–1) on membrane supports was seen to be comparable to solution enzyme specific activity of 10 min(–1). UDP-Glc production efficiencies as high as 98% were observed at a flow rate of 0.5 mL/min, at which the substrate residence time over the electrode length down pore entrances was matched to the enzyme activity rate. This flow geometry also prevented an unwanted secondary product hydrolysis reaction, as observed in the test homogeneous solution. Enzyme utilization increased by a factor of 280 compared to test homogeneous conditions due to the continuous flow of fresh substrate over the enzyme. To mimic enzyme complex systems, a two-step sequential reaction using OleD Loki enzyme was performed at membrane pore entrances then exits. After UDP-Glc formation at the entrance electrode, aglycon 4-methylumbelliferone was supplied at the exit face of the reactor, affording overall 80% glycosylation efficiency. The membrane platform showed the ability to be regenerated with purified enzyme as well as directly from expression crude, thus demonstrating a single-step immobilization and purification process.
منابع مشابه
Improving the Direct Electron Transfer in Monolithic Bioelectrodes Prepared by Immobilization of FDH Enzyme on Carbon-Coated Anodic Aluminum Oxide Films
Citation: Castro-Muñiz A, Hoshikawa Y, Komiyama H, Nakayama W, Itoh T and Kyotani T (2016) Improving the Direct Electron Transfer in Monolithic Bioelectrodes Prepared by Immobilization of FDH Enzyme on Carbon-Coated Anodic Aluminum Oxide Films. Front. Mater. 3:7. doi: 10.3389/fmats.2016.00007 improving the Direct electron Transfer in Monolithic Bioelectrodes Prepared by immobilization of FDh en...
متن کاملFabrication of a porous anodic alumina membrane
With the aim of developing a process for surface enlargement on an electrode for measuring brain activity attempts have been made to fabricate a porous anodic alumina membrane directly on the electrode. The porous membrane was intended to be used as scaffold for deposition of an electrically conducting polymer on the electrode surface. A silicon wafer with gold electrodes was the base onto whic...
متن کاملAnodic aluminium oxide catalytic membranes for asymmetric epoxidation.
Catechol-functionalized (salen)Mn complexes can be supported on mesoporous anodized aluminium oxide disks to yield catalytic membranes that are highly active in the enantioselective epoxidation of olefins when being deployed in a forced-through-flow reactor.
متن کاملNano sand filter with functionalized nanoparticles embedded in anodic aluminum oxide templates
Since the ancient Egyptians had used sand as filter media for water purification, its principle has been inherited through generations and it is still being used now in industries. The sand filter consists of sand literally, and the voids within the sand bed are the pores for filtration. Here we present a filtration principle using nanoparticles, so that the voids between the nanoparticles can ...
متن کاملVoltammetric determination of acetaminophen and tryptophan using a graphite screen printed electrode modified with functionalized graphene oxide nanosheets within a Fe3O4@SiO2 nanocomposite
A high sensitive electrochemical nanostructure sensor based on graphene oxide/Fe3O4@SiO2 nanocomposite modified graphite screen printed electrode (GO/Fe3O4@SiO2/SPE) has been developed for trace analysis of acetaminophen. The electrochemical study of the modified electrode, as well as its efficiency for simultaneous voltammetric oxidation of acetaminophen and tryptophan is described. Compared w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 8 شماره
صفحات -
تاریخ انتشار 2014